Homework 6: Table Making

Econ 245M

Overview

For this homework assignment, you will be replicating two tables from the paper (Anwar et. al 2022) on the consequences of unequal jury representation in Harris County, Texas. The goal of this assignment is to get you comfortable making publication ready tables *without any manual editing*. This is steep fixed cost, but it will save you hours in the future and will reduce the number of errors in your work. Moreover, knowing how to make publication-ready tables will give a good impression in your Econ 290 group (screenshots of output send a terrible signal!).

Before you begin, it is recommended that you read two vignettes: the kableExtra vignette and the modelsummary vignette. Each of these packages will be imperative to replicating the tables in the paper. If you do not read these vignettes, this homework will be near-impossible.

You will need two data sets for this homework which are available on the course website.

To Receive Credit

- Save the scripting file (i.e. your R program file) as assignment_6.R. Make sure your capitalization is correct as the autograder is case-sensitive.
- Make sure all changes to the original dataset are done within the R script.

Part 1: Coding Assignment

For this assignment, you will be turning in a PDF with your final tables to Gradescope in addition to your assignment_8.R script.

- 1. The goal of this question is to replicate Table 1 in (Anwar et. al 2022). This is a basic summary statistics table. To do this, you will need to use the data zipcode_representation_analysis.dta. You will need to use the following columns to create the table: zip_pctwhite2000, zip_pctblack2000, zip_pctlaborforceold16, zip_medfaminc, zip_pctlesspov, zip_pct_hsgrad, zip_pctforeighborn (yes that's spelled incorrectly), zip_totalpop_2000, and zip_numover16.
 - a) Using the haven::read_dta function, read in the data and save the tibble with the name zipcodes.
 - b) It's time to create the table. Read the modelsummary::datasummary webpage vignette. Using modelsummary::datasummary will be the easiest way to create this table. The basic strategy is to create a tibble in the format of what we see in the paper using modelsummary::datasummary. Then, pass this tibble into the kableExtra::kbl function and proceed to edit it with column headers and footnotes using other functions in the kableExtra package.
 - c) Create a new column named overrepresented which is equal to "overrepresented" if the column representation_pool is greater than 1, and "underrepresented" otherwise.

d) Now, you will need to use modelsummary::datasummary to create the tibble you want. Make sure to set the output argument to data.frame. This will allow you to later pass in the tibble to the kableExtra::kbl function to edit using the excellent kableExtra functions. Your tibble should look similar to Table 1. Note that there are commas where the numbers get large. Since this may take you a long time to figure out how to get the correct format, here is the code to help:

e) Now that you have your desired tibble, you need to pass it through the kableExtra::kbl function. Note that you will want to use the col.names argument to change the column names, the caption argument to change the caption, set the booktabs argument to TRUE (this will make the table look like a publication table in PDF format), and set the align argument to lccc (stands for left-center-center-center) to align the columns correctly. Next, you will want to use the kableExtra:add_header_above function to create the column headers (you can use \n as a newline character within the string). Finally, you will need to use the kableExtra::footnote function to create the footnote. You will also want to set the argument threeparttable=T in the footnote function so the table does not bleed off the page. Your final table should look like Table 2.

	underrepresented / Mean	underrepresented / SD
Pool representation ratio	0.6	0.2
Percent White	26.4	20.6
Percent Black	26.3	25.0
Percent Hispanic	42.0	23.0
Percent labor force (over 16)	61.1	9.8
Zip code median family income	38,238.90	11,574.6
Percent income $<$ poverty	17.7	8.3
Percent high school graduates	63.8	15.9
Percent foreign born	25.0	12.4
Total population in zip code	29,602.90	13,740.5
Population $>$ age 16	20,984.60	9,612.0

Table 1: An example of how your tibble should appear in Question 1d. Note several columns are removed for presentation purposes.

	Underrepres observa = 71 zij	ented (<1) ations p codes	Overrepresented (>1) observations =58 zip codes	
Zip code measure	Mean	SD	Mean	SD
Pool representation ratio	0.6	0.2	1.8	1.5
Percent White	26.4	20.6	64.8	19.4
Percent Black	26.3	25.0	10.1	13.0
Percent Hispanic	42.0	23.0	18.4	11.0
Percent labor force (over 16)	61.1	9.8	70.0	5.4
Zip code median family income	38,238.90	$11,\!574.6$	$76,\!572.7$	$30,\!282.9$
Percent income < poverty	17.7	8.3	5.6	3.9
Percent high school graduates	63.8	15.9	87.5	9.3
Percent foreign born	25.0	12.4	14.3	6.7
Total population in zip code	$29,\!602.90$	13,740.5	$24,\!413.3$	$12,\!956.8$
Population $>$ age 16	$20,\!984.60$	$9,\!612.0$	$17,\!893.1$	$9,\!107.5$

Table 2: Census Characteristics of Zip Codes Undrepresented and Overrepresented in Harris County Jury Pool

Note:

Zip codes are classified as underrepresented and overrepresented based on their representation in the raw jury pool data relative to that in the census.

- 2. For this question, the goal is to recreate the regression output in Table 2 of (Anwar et. al 2022). To do this, you will need to estimate regressions using the fixest package, and then follow a similar workflow as before: use modelsummary::modelsummary to get a tibble of your desired table, and then pass this tibble into kableExtra::kbl to customize. You will need to use the jury_analysis_extract.dta data for this question. The necessary columns to use here are max_length_prob, pool_sh_quartile1, pool_sh_quartile4, def_race, and life_sent_elig.
 - a) Using the haven::read_dta function, read in the data and save it as jury.
 - b) You will need to estimate six regressions using fixest::feols. You will not be adjusting standard errors. You will be regressing each column in order. First, regress max_length_prob on pool_sh_quartile1 and pool_sh_quartile4, while filtering def_race == 1 (for White defendants only). Save this object as white_length_prob.
 - c) Similar to part b, estimate the same equation, but filter to only def_race == 2 (for Black defendants). Save this object as black_length_prob.
 - d) Similar to parts a and b, estimate the same equation, but filter def_race == 1 and life_sent_elig == 1. Save this object as white_length_prob_lse.
 - e) Similar to part d, estimate the same equation but filter def_race == 2 and life_sent_elig ==
 1. Save this object as black_length_prob_lse.
 - f) Now estimate a new regression of life_sent on pool_sh_quartile1 and pool_sh_quartile4 while filtering def_race == 1 and life_sent_elig == 1. Save this object as white_lse.
 - g) Similar to part f, estimate the same regression but filter def_race == 2 and life_sent_elig ==
 1. Save this object as black_lse.
 - h) Now it is time to make the table. You will need to read the vignettes outlined above. In particular, the modelsummary vignette will be helpful. As mentioned earlier, you will follow a similar workflow as Question 1. Therefore, you will first create the tibble with the desired information using modelsummary::modelsummary function while setting the output argument to data.frame. The following code provides you with an outline for getting the correct tibble:

```
modelsummary(list(), ## fill in
         coef_map = , ## fill in
         gof_omit = , ## fill in
         gof_map = , ## fill in
         output = "data.frame",
         fmt = ) %>% ## fill in
  select(-part, -statistic) %>% ## drops unnecessary columns
 mutate(term = ifelse(row number() == 2 |
                     row_number() == 4 |
                     row_number() == 6, " ", term)) %>% ## inserts blanks in rows
  add_row(term = "Full sample or life sent. eligible (LSE)?",
      `Model 1` = "Full",
      `Model 2` = "Full",
      `Model 3` = "LSE",
      Model 4 = "LSE",
      `Model 5` = "LSE",
      Model 6 = "LSE",
      .before = 7) %>% ## adds a row with following information
  add_row(term = "Defendant race",
      `Model 1` = "White",
      `Model 2` = "Black",
      `Model 3` = "White",
      `Model 4` = "Black",
      `Model 5` = "White",
      `Model 6` = "Black",
      .before = 8) ## adds a row with following information
```

i) Finally, using kableExtra::kbl recreate Table 3. You will need to change the col.names, booktabs, align, and caption arguments. Furthermore, you will need to use the kableExtra::add_header_above and kableExtra::foonote functions.

	Sentence length (years with aquittals=0)			Convicted of a life setence		
	(1)	(2)	(3)	(4)	(5)	(6)
Proportion of pool in Q1	21.15	1.51	38.25	3.23	-0.03	0.02
Proportion of pool in Q4	(32.32) -14.20 (46.23)	(25.15) 59.45 (25.24)	(00.00) 35.91 (62.00)	(29.13) 92.06 (29.36)	(0.73) -0.27 (0.71)	(0.31) 0.88 (0.31)
Constant	(40.23) 28.03	(25.24) 15.62	(02.00) 23.06	(29.50) 12.64	(0.71) 0.27	-0.10
Full sample or life sent. eligible (LSE)? Defendant race Observations R^2	(20.59) Full White 166 0.0025	(10.97) Full Black 551 0.0118	(26.89) LSE White 104 0.0047	(12.63) LSE Black 436 0.0261	(0.31) LSE White 104 0.0016	(0.13) LSE Black 436 0.0216

Table 3: Relationship between Jury Pool Representation and Trial Outcomes

Note:

All regressions use OLS and standard errors are in parentheses. Michael was able to do this.